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Under consideration for publication in J. Functional Programming 1Inductive Graphs andFunctional Graph AlgorithmsMartin ErwigOregon State UniversityDepartment of Computer ScienceCorvallis, Oregon 97331, USA(e-mail: erwig@cs.orst.edu)AbstractWe propose a new style of writing graph algorithms in functional languages which is basedon an alternative view of graphs as inductively de�ned data types. We show how this graphmodel can be implemented e�ciently, and then we demonstrate how graph algorithms canbe succinctly given by recursive function de�nitions based on the inductive graph view.We also regard this as a contribution to the teaching of algorithms and data structures infunctional languages since we can use the functional-style graph algorithms instead of theimperative algorithms that are dominant today.Keywords: Graphs in Functional Languages, Recursive Graph Algorithms, TeachingGraph Algorithms in Functional Languages1 IntroductionHow should I implement a graph algorithm in a functional programming language?This seemingly simple question has attracted attention for quite a long time, andthere are many di�erent proposals for how to do so. Of course, it is not really di�cultto somehow realize graph algorithms in functional languages. The real challenge isto obtain clear and e�cient programs, that is, functional programs that do notlose their elegance and simplicity and that have the same asymptotic complexityas imperative ones.The main di�culties that arise when dealing, for example, with depth-�rst searchin functional languages are caused by the fact that a node might be reachable viadi�erent edges, whereas the algorithm requires that it must be visited at mostonce. In traditional descriptions of graph algorithms and in imperative languagesthis behavior is achieved by simply marking a node as being visited after it hasbeen encountered the �rst time. When a node is reached again, checking its markprevents the algorithm from re-processing it (and also from possibly running intoan in�nite loop). This node-marking strategy can easily be mimicked in functionallanguages: remember visited nodes in a data structure and pass this data struc-ture through all function calls that occur in the context of the algorithm. In this



2 Martin Erwigway a local state of node marks is maintained by the algorithm. However, this ap-proach bears two problems with regard to e�ciency and clarity. First, whereas inthe imperative setting marking a node and testing for a node mark can be per-formed in constant time by using an array, functional set data structures generallycannot meet this time bound: for example, using balanced binary search trees, setinsertion and membership test take O(logn) time (where n denotes the numberof elements in the set). Second, the threading of data structures requires all par-ticipating functions to have an additional parameter for passing the state around,and this a�ects the readability of the algorithms and, what is worse, the ease ofmanipulating programs and proving program properties, which is a key attributeof functional programming.One solution to the �rst problem is to use monads to thread arrays with constant-time access through function calls (King & Launchbury, 1995; King, 1996). How-ever, this complicates the function de�nitions, making them less readable and moredi�cult to understand, as well as forcing the algorithms to be written in an im-perative style. Another answer to the �rst problem is the use of uniqueness types(o�ered, for example, by the Clean language (Barendsen & Smetsers, 1996)) orto rely on automatic discovery of single-threadedness and generate in these casessafe imperative code (Hudak & Bloss, 1985; Sastry et al., 1993). Despite the factsthat uniqueness types are not widespread (for example, neither Standard ML norHaskell has them) and that single-threaded analysis cannot discover all cases, bothapproaches adhere to the imperative node marking view of graph algorithms andthus provide no answer to the question of functional style.Another aspect is that of teaching graph algorithms in functional languages.Why, the reader might ask, is this an issue at all? It can be seen from newsgroupdiscussions that re-appear in rather regular intervals that functional languages arestill in need of defending themselves and demonstrating that they can be used aswell as mainstream imperative or object-oriented languages.Now the proof of usability of a programming language manifests itself not onlyin applications that are written in that language, but also to a certain degree in theavailable teaching materials for that language. For example, textbooks can convinceprogrammers and students that a language is really usable. First of all, explanationsof the language itself are needed, so that programmers and students are able to learnthe language and its programming style. There are quite a few textbooks availableintroducing functional programming in general and also particular functional lan-guages, but only very few that could be used for a (general) course in algorithmsand data structures | one example is Rabhi and Lapalme (1999). However, to bereally cogent in saying that functional languages are a true alternative to impera-tive or object-oriented languages, it is indispensable to have also teaching materialin functional languages to demonstrate that functional languages are not just toys,but can also address standard topics in algorithms and data structures. Moreover,this teaching material could also be used to implement a typical (undergraduate)curriculum completely in a functional language. If, on the other hand, functionalalgorithm and data structure textbooks are not available, the fatal impression isconveyed that to implement real data structures, one has resort to C or the like.



Inductive Graphs and Functional Graph Algorithms 3We believe that this leaves a very negative impression of the usability of functionallanguages in general.Why do so few functional data structure textbooks exist? We believe that onereason is that the treatment of graphs in functional languages has been rather weakso far.Hence, the goal of this paper is twofold. First, we want to demonstrate thatit is possible to de�ne graph algorithms in a distinctive functional style and thatthese algorithms are at the same time often competitive in terms of e�ciency withtypical imperative implementations. Second, by giving a collection of algorithmstypically found in courses on algorithms and data structures, we try to close a gap infunctional algorithms and data structure textbooks. In Section 2 we review relatedwork. The foundations for functional graph algorithms are laid in Section 3 wherethe inductive graph view is explained. There we also discuss the implementationof these functional graphs. In Section 4 we then de�ne several graph algorithms byrecursive function de�nitions that follow the inductive graph structure. Conclusionsgiven in Section 5 complete this paper.The source code for all the examples of this paper are available as part of theFunctional Graph Library (FGL) that can be obtained through the World-WideWeb from www.cs.orst.edu/~erwig/fgl/. Throughout this paper we use Haskellnotation. As an extension we employ active patterns, which provide a special kindof pattern matching explained in Section 3.2, because this allows a more succinctdescription of most algorithms. The use of active patterns is is helpful, but notessential, and the versions of the algorithms in the FGL are actually de�ned withoutusing them. 2 Related WorkA straightforward approach to implementing graph algorithms in functional lan-guages proposed in Burton and Yang (1990) is to pass the state used by graphalgorithms through function calls where the state itself is represented by a func-tional array. This is certainly a standard way of implementing any imperative algo-rithm in a functional language. Burton and Yang show how classical algorithms canbe translated into a lazy functional language, but no particular use of functionallanguages is made in the design of the algorithms themselves.In contrast, Kashiwagi and Wise (1991) describe algorithms as �xed points ofrecursive equations, which essentially relies on lazy evaluation. The algorithms be-come quite complex and are rather di�cult to comprehend. As with Burton andYang (1990) this approach does not achieve the asymptotic running time of imper-ative algorithms.A kind of combinator approach in Erwig (1992), which identi�ed some classes ofgraph algorithms and introduced a few corresponding prede�ned operators. A graphalgorithm is realized by selecting an operator and providing it with appropriateparameter functions and data structures. We believe that the approach reectsthe structure of graph algorithms very well. However, like in the previous two



4 Martin Erwigapproaches there is not much potential for formal program manipulation. Anotherdrawback is that the combinator approach is limited in expressiveness.The proposal of King and Launchbury (1995) is concerned only with depth-�rstsearch, and the focus is on a generated data structure, the depth-�rst spanningforest, instead of the underlying graph algorithm. This facilitates formal reasoning| in particular, the formal development of many algorithms based on depth-�rstsearch becomes possible. The depth-�rst search function itself is realized nicelyin a generate-and-prune manner. Monads are used to implement the state main-tained during the search (that is, the vertices visited) to achieve linear runningtime. At this point the approach is stuck with the imperative programming style.Although encapsulated and restricted to a single point, it comes up in the processof program fusion where transformations become quite complex when functions aremoved across state transformers. For example, see Launchbury (1995) where it isdemonstrated how phase fusion can be applied to eliminate intermediate results ofsome of these algorithms. King (1996) de�nes in his thesis many more algorithms,but as with depth-�rst search, the de�ned functions are mainly implementations ofimperative algorithms.Fegaras and Sheard (1996) investigate a generalization of fold operations to datatypes with embedded functions. As one motivating example they show how to modelgraphs. However, that approach is somewhat limited (it is not clear how to de�ne,for example, a function for reversing all edges in a graph) and it is highly ine�cientsince direct access to a node requires, in general, traversal of the whole graph.Also related is the work of Gibbons (1995) who considers the de�nition of graphfold operations within an algebraic framework. But he deals only with acyclicgraphs, and an implementation is not discussed. A categorical de�nition for foldoperators on abstract data types was proposed in Erwig (2000). In that approachthe decomposition of ADTs can be controlled by external values. One main applica-tion was the de�nition of graph operations like depth-�rst search that, in contrastto Gibbon's approach, work on arbitrary graphs.In contrast to the monolithic view of graphs which is so dominating that it is evenadopted by most functional approaches, we suggest to view graphs inductively, as adata type de�ned by two constructors, much like lists or trees. This view was �rstpresented in Erwig (1997b) where the focus was to de�ne several kinds of graphfold operations and to identify laws for them that can be used for program trans-formation. Also a �rst implementation of functional graphs was provided. In Erwig(1997a) we have extended the implementation in several ways and have compareddi�erent representation schemes by performing some benchmarks. The inductivegraph view has also applications that go beyond the realization of functional graphalgorithms. For example, inductive graphs have facilitated the denotational seman-tics de�nition of visual languages (Erwig, 1998b). Another application, which has astrong educational component, is the purely functional description of graph reduc-tion (Erwig, 1998a). Still another application that we are currently investigating isthe treatment of graph grammars in a functional setting.Most of the existing textbooks on functional programming concentrate on ex-plaining the fundamental programming and language concepts. To a certain extent



Inductive Graphs and Functional Graph Algorithms 5data structures are sometimes covered, too. In fact, most books contain examplesof list and tree algorithms, for example, Bird (1998) and Ullman (1998), but theydo not treat graphs. Some books mention graphs, but do so rather super�cially(Paulson, 1996; Reade, 1989).A dedicated data structure textbook is Rabhi and Lapalme (1999). To some de-gree the book by Harrison (1989) could also be used. Both books contain materialabout graphs and graph algorithms, but the representations chosen are those knownfrom the imperative world. This causes a breach in the presentation since the dis-tinctive clear and succinct functional programming style is lost to some degree.Several graph algorithms are also contained in King's PhD thesis (King, 1996).These make heavy use of monads and rely very much on state-based computations.Hence, the algorithms are as well mainly those known from the imperative world.The most comprehensive and most advanced book on data structures in functionallanguages is that of Chris Okasaki (1998). However, it does not contain materialon graphs or graph algorithms.3 Inductive GraphsThe prevailing view of graphs in programming is that of a large monolithic block:disregarding node and edge labels, a graph is viewed as a pair G = (V;E) where Vis a set of nodes and E � V � V is a set of edges. The descriptions of algorithmsthat work incrementally on graphs, that is, algorithms that visit nodes one afterthe other, then need an additional data structure for remembering the parts of thegraph that have already been dealt with. Alternatively, the graph representation isde�ned to have additional �elds that allows for marking nodes and edges directlyin the graph structure itself.This \node marking" strategy reects an inherently imperative style of algo-rithms, and this also shows up a bit painfully when one tries to implement thesealgorithms in a functional language: one has to thread a data structure for thenode marks through all the functions that are involved in the implementation ofan algorithm. This might be done by passing an additional parameter or by usingmonads. In any case, a state has to be threaded through the algorithm, and thiscomplicates all aspects of the algorithm. Moreover, it complicates correctness proofsand program transformations considerably.This has to be seen in contrast to list or tree algorithms that have beautiful andsimple de�nitions not needing additional bookkeeping. The reason is that lists andtrees are inductively de�ned data types, and function de�nitions, which can followquite naturally the de�nition of the argument data type, are inductive in style, too.Finally, the use of pattern matching contributes signi�cantly to the succinctnessand elegance of those function de�nitions.Now what we are proposing is essentially to regard a graph as an inductive datatype. This makes graph algorithms amenable to inductive function de�nitions withall their advantages.Graphs will conceptually be represented by two constructors; we will introducethese constructors in Section 3.1. Simple algorithms can be implemented imme-



6 Martin Erwigdiately using pattern matching on these two basic constructors. However, moreadvanced algorithms require the ability to visit nodes in speci�c order, and this issupported by a particular kind of pattern matching, which is described in Section3.2. In Section 3.3 we describe and discuss several ways to implement inductivegraphs. In the following we denote by n (m) the number of nodes (edges) in agraph. 3.1 Graph ConstructorsA graph consists of a set of nodes that are connected by edges. For simplicity weassume that nodes are represented by integers, and for generality we de�ne a singlegraph type for directed node- and edge-labeled multi-graphs. Other graph typescan be obtained as special cases: for example, undirected graphs can be simulatedby directed graphs having a symmetric edge structure, where we say that a directedgraph g properly represents an undirected graph if for each edge (v; w) in g thereis also an edge (w; v) in g with the same label. Moreover, unlabeled graphs simplyhave the node and/or edge label type \()" (unit).The inductive view of graphs is captured in the following description: a graphis either the empty graph or a graph extended by a new node v together with itslabel and with edges to those of v's successors and predecessors that are alreadyin the graph. The representation of each edge contains the successor/predecessornode and the label of the edge. This information about a one-step inductive graphextension is contained in a type called the context.type Node = Inttype Adj b = [(b;Node)]type Context a b = (Adj b;Node; a;Adj b)The graph type itself is implemented for e�ciency reasons as an abstract type (seeSection 3.3). However, it is very convenient to think of the graph type being de�nedas an algebraic type with two constructors Empty and & (used in in�x notation):data Graph a b = Empty j Context a b & Graph a bThe above de�nition suggests that graphs are isomorphic to lists, however this is notthe case because graphs are not freely generated by Empty and &. With these twoconstructors we can now denote graphs by data type terms. Consider, for instance,the graph shown (on the left) in Figure 1.We can build this graph, for example, with the following expression (�rst thesolid, then the dashed, and �nally the dotted part, see graph in the middle ofFigure 1):([("left"; 2); ("up"; 3)]; 1; 'a'; [("right"; 2)]) &([ ]; 2; 'b'; [("down"; 3)]) &([ ]; 3; 'c'; [ ]) & EmptyThe chosen order of inserting node contexts is not the only possible one. For exam-ple, we can also reverse the order. Then, however, the contexts have to be changed



Inductive Graphs and Functional Graph Algorithms 71 a b 23 crightleftup down 1 a b 23 crightleftup down 1 a b 23 crightleftup downFigure 1. Directed graph with two inductive constructions.accordingly since we can refer in predecessor and successor lists only to nodes thatare already present in the graph to be extended (see graph on the right in Figure1). ([("down"; 2)]; 3; 'c'; [("up"; 1)]) &([("right"; 1)]; 2; 'b'; [("left"; 1)]) &([ ]; 1; 'a'; [ ]) & EmptySince & is de�ned as a function, consistency checks for graph construction canbe integrated. In fact, an error is reported when a context is added for a nodethat is already present in the graph or when a node mentioned in the successor orpredecessor list is missing in the graph.Actually, we can choose an arbitrary order of node insertion for building a graph.This is a very important property that sets the theoretical foundation for the possi-bility of a powerful kind of pattern matching on graphs to be described in the nextsubsection. We express this result by the following two facts:Fact 1 (Completeness)Each labeled multi-graph can be represented by a graph term.Fact 2 (Choice of Representation)For each graph g and each node v contained in g there exist p; l; s and g0 such that(p; v ; l ; s) & g 0 denotes g.These two observations can also be established more formally: we can de�ne asemantics of the graph constructors and express the relationships based on thissemantics, see Erwig (1997b).The inductive graph view does not mean that one is always forced to invent aproper sequence of contexts to de�ne graphs. In fact, this can become quite tedious,and we have therefore de�ned a number of operations to insert lists of nodes andedges into a graph. In this connection we also mention the function newNodes thatyields a list of nodes that are not contained in a graph.newNodes :: Int ! Graph a b ! [Node]newNodes i g = [n + 1::n + i ] where n = foldr max 0 (nodes g)This function is particularly useful for extending a graph whose construction historyis not known. The function nodes extracts the node values from a graph; it is de�nedin the next subsection.



8 Martin Erwig3.2 Pattern Matching on GraphsHaving introduced and described inductive graphs as terms, we can use patternmatching on this representation. First, we can de�ne elementary functions like:isEmpty :: Graph a b ! BoolisEmpty Empty = TrueisEmpty = FalseBut we can also realize more interesting operations. For example, we can de�ne amap function for graphs by simple term pattern matching:gmap :: (Context a b ! Context c d) ! Graph a b ! Graph c dgmap f Empty = Emptygmap f (c & g) = f c & gmap f gNote that gmap preserves the structure of the nodes, but not necessarily of theedges. A graph reversal function can be easily de�ned using gmap:grev :: Graph a b ! Graph a bgrev = gmap swap where swap (p; v ; l ; s) = (s ; v ; l ; p)The advantages of this programming style are, in particular, very simple proofs ofprogram properties or transformation rules. For example, it needs just a couple oflines to prove by induction, say, a fusion law for gmap and an inversion rule forgrev : gmap f : gmap f 0 = gmap (f : f 0) (gmap fusion)grev : grev = id (grev inversion)We can prove gmap fusion by induction on the graph structure. For g = Emptywe have by de�nition gmap f (gmap f 0 Empty) = gmap f Empty = Empty =gmap (f : f 0) Empty . Otherwise, with g = c & g 0 we conclude by induction:gmap f (gmap f 0 g) = gmap f (gmap f 0 (c & g 0)) (Def: g)= gmap f (f 0 c & (gmap f 0 g 0)) (Def: gmap)= f (f 0 c) & gmap f (gmap f 0 g 0) (Def: gmap)= (f : f 0) c & gmap (f : f 0) g 0 (Ind: Hyp:)= gmap (f : f 0) (c & g 0) (Def: gmap)= gmap (f : f 0) g (Def: g)In the proof for the second equation we need the following two obvious facts aboutswap and gmap:swap : swap = id (swap idempotency)gmap id = id (gmap unit)Now we can prove grev inversion with the help of the gmap fusion law.grev : grev = gmap swap : gmap swap (Def: grev)= gmap (swap : swap) (gmap fusion)= gmap id (swap idempotency)= id (gmap unit)



Inductive Graphs and Functional Graph Algorithms 9To really appreciate the elegance of this proof, the reader might try to prove thesame property for the imperative graph reversal algorithm that works by iteratingover all adjacency lists.Another useful basic function on graphs is ufold .1ufold :: (Context a b ! c ! c) ! c ! Graph a b ! cufold f u Empty = uufold f u (c & g) = f c (ufold f u g)With ufold we can implement gmap and a couple of other graph functions:gmap f = ufold (nc! (f c &)) Emptynodes :: Graph a b ! [Node]nodes = ufold (n(p; v ; l ; s)! (v :)) [ ]undir :: Eq b ) Graph a b ! Graph a bundir = gmap (n(p; v ; l ; s)! let ps = nub (p++s) in (ps ; v ; l ; ps))Since graphs are implemented in FGL as an abstract type, the reader should beaware of the fact that & is a function and not a constructor and therefore cannotbe used in patterns. Instead, FGL de�nes the predicate isEmpty and a function forextracting an arbitrary context:matchAny :: Graph a b ! (Context a b;Graph a b)Note that matchAny reports an error when it is applied to empty graphs.Now a function like gmap is implemented in FGL typically as follows.gmap f g j isEmpty g = gj otherwise = f c & (gmap f g 0)where (c; g 0) = matchAny gIn general, contexts are not encountered in the reverse order in which they wereinserted into a graph. However, this does not a�ect reasoning as demonstratedabove since preconditions like g = c & g 0 refer to arbitrary representations. As faras practical work with FGL is concerned, not keeping the term representation is nota problem either since equality of graphs is de�ned on the basis of the set of nodesand edges contained in graphs. Thus, like we have in our model g = gmap id g ,we also �nd in FGL that g gmap id g evaluates to True. Another question thatarises with di�erent term representations for one graph is whether graph algorithmsde�ned using ufold or gmap are correct at all because they might encounter anarbitrary representation. Correctness of an algorithm requires that it is in a certainsense robust with respect to the term representation of a graph, that is, it works foran arbitrary (valid) term representation. Indeed, this question has to be consideredfor each de�nition individually. For example, the de�nition of grev works correctly1 The \u" stands for unordered and emphasizes that the order of encountering nodes is notimportant. Other fold operations, in particular, using ordered graph decomposition, are de�nedin Erwig (1997b).



10 Martin Erwigsince it does not change the order of contexts and since the dependency of thesuccessor/predecessor nodes on being already inserted by previous contexts is nota�ected by exchanging the successor and predecessor lists. In contrast, for functionsf that change the contexts in arbitrary ways, gmap may succeed for some ordersand fail for others, because of the requirement that successor/predecessor nodesalready exist in the graph.Many other algorithms require contexts to be matched in a very speci�c order.At this point, the multiple representations for graphs o�er a great opportunity tode�ne a special kind of pattern matching that just allows the selection of contextsfor speci�c nodes.In Erwig (1996) we introduced active patterns, which essentially extend patternsby a function component that is applied to the argument value before it is matchedagainst the pattern. This function can be used to transform the argument into thedesired form so that matching can extract afterwards just the parts in their desiredform. In this respect active patterns are similar to views (Wadler, 1987; Burton &Cameron, 1993). However, an active pattern's function has access to external valuesother than the argument, which facilitates the external control of the argumentreorganization. This is not possible with views, but it is possible with the approachpresented in Erwig and Peyton Jones (2000) and, to a limited degree, also withthe proposal of Palao Gostanza et al. (1996). (For a more detailed comparison withseveral other pattern-matching extensions, see Erwig and Peyton Jones (2000).)We are not going to explain active patterns in full detail here; for our purposeit is su�cient just to de�ne an active graph pattern: Fact 2 tells us that for eachnode v contained in a graph there is a term representation (p; v ; l ; s) & g for somesuitable p; l; s, and g. Now the active pattern (c &v g) is matched against a graph g0by searching for node v in g0 and transforming, at least conceptually, g0 into a termrepresentation in which v's context is inserted last, so that it is the argument ofthe outermost application of &. Of course, this can be done only if v is contained ing0. In that case the pattern is said to match and v's context is bound to c, and thegraph without the context, that is, without v and its incident edges, is bound tog. On the other hand, if v is not contained in g0, the pattern fails, no bindings areproduced, and pattern matching continues as after a normal pattern-match failure.Note that the v in &v is an expression, not a pattern. If it is a variable, then itmust already be bound to a value when the active graph pattern is evaluated. Thistypically happens by using v as a parameter preceding the graph pattern.Some examples of the use of active graph patterns are determining a node'ssuccessors, computing the degree of a node, or deleting a node from a graph:gsuc :: Node ! Graph a b ! [Node]gsuc v (( ; ; ; s) &v g) = map snd sdeg :: Node ! Graph a b ! Intdeg v ((p; ; ; s) &v g) = length p + length sdel :: Node ! Graph a b ! Graph a bdel v ( &v g) = g



Inductive Graphs and Functional Graph Algorithms 11Table 1. Basic Graph OperationsConstruction DecompositionEmpty graph (Empty) Test for empty graph (Empty-match)Add context (&) Extract arbitrary context (&-match)Extract speci�c context (&v)Note that the use of active patterns is not essential; we can always rewrite functionsby explicitly calling a function match that searches for the context of a given node vin a graph g and returns this context (if found) together with the remaining graph:match :: Node ! Graph a b ! (Maybe (Context a b);Graph a b)Then a function f that uses an active pattern in the following way:f p (c &v g) = ef p g = e 0can be rewritten with a case expression asf p g 0 = case match v g 0 of(Just c; g) ! e(Nothing ; g) ! e 0(Note that other equations for f that precede the one with the active pattern canbe kept unchanged. See, for instance, dfs in Section 4.1.)Now the function gsuc can also be implemented as:gsuc v g 0 = case match v g 0 of(Just ( ; ; ; s); g) ! map snd sIn fact, this is the way functions are implemented in FGL because active patternsare not available in Haskell.In addition to gsuc we will frequently need a function that selects the successorsfrom a known context. Therefore, we also de�ne:suc :: Context a b ! [Node]suc ( ; ; ; s) = map snd s3.3 Implementation and ComplexityThe implementation of inductive graphs has to support the operations for con-structing and decomposing graphs shown in Table 1.In particular, graphs have to be fully persistent, that is, updates on a graph mustleave previous versions intact.



12 Martin Erwig3.3.1 Graph Representations and PersistenceOne idea is to use a plain term representation, which o�ers persistence for free.However, a closer look rules out this option because the implementation of the &vpattern is hopelessly ine�cient, and even the implementation of the & function isine�cient since it has to ensure the existence of the predecessors and successorsand the non-existence of the newly inserted node, and testing this takes at leastlinear time with respect to the size of the graph.Considering the imperative world, there are two main representations: adjacencylists and incidence matrices. Each has strengths and weaknesses. Except for specialapplications, adjacency lists are generally favored over incidence matrices because1. adjacency lists require less space for all but very dense graphs and2. adjacency lists o�er O(1) access time to the successors of an arbitrary node incontrast to 
(n) time needed to scan a complete row in an incidence matrix.We have therefore concentrated on two alternatives for making adjacency lists per-sistent: the �rst representation uses a variant of the version-tree implementation offunctional arrays, and the second representation stores successor and predecessorlists in a balanced binary search tree. The version-tree implementation is based onAasa et al. (1988) and records changes to the original array in an inward directedtree of (index, value) pairs that has the original array at its root.2 Each di�er-ent array version is represented by a pointer to a node in the version tree, andthe nodes along the path to the root mask older de�nitions in the original array(and the tree). Adding a new node to the version tree can be done in constanttime, but index access might take up to u steps where u denotes the number ofupdates to the array. This basic structure can be extended by an additional cachearray, and we add a further array carrying time stamps for nodes. Moreover, tosupport some specialized operations e�ciently, this structure is supplemented by atwo-array implementation of node partitions to keep track of inserted and deletednodes. 3.3.2 Optimizing the Version-Tree Array RepresentationIn the version-tree representation, the implementation of &v becomes quite ine�-cient since the deletion of a context (p; v ; l ; s) requires the removal of v from eachpredecessor's successor list and from each successor's predecessor list. When c de-notes the size of the context (c � lengthp + length s), this means a running time ofO(uc2) (recall that u gives the total number of previous updates to the graph). Bykeeping the predecessors and successor in balanced binary search trees, the e�ortcan be reduced to O(uc log c).2 In fact, there are more sophisticated functional array implementations available, for example,Dietz (1989) and O'Neill and Burton (1997). However, the implementation of these data struc-tures requires considerable e�ort, and benchmarks have shown that even the simpler version-treeimplementation does not deliver in practice what its asymptotic complexity promises (Erwig,1997a).



Inductive Graphs and Functional Graph Algorithms 13Avoiding Node Deletion. To avoid these costly deletion activities we equip eachnode in the graph with a positive integer, and this integer is negated once the nodeis deleted. Positive node stamps are also put into successor/predecessor lists. Nowwhen a node context is deleted, we need not remove v from all referencing successorand predecessor lists because when a successor list l (of a node w) is accessed thatcontains v, all elements that have non-matching stamps are ignored, that is, v willnot be returned as a successor because it has a negative node stamp whereas lcontains v with a positive stamp. When v is re-inserted into the graph later, wemake the stamp of v positive again and increase it by 1, and we take this newstamp over to all newly added predecessors and successors. Now if w is not amongthe new predecessors, the old entry in l is still correctly ignored when l is accessedbecause its value is smaller than v's current stamp.In practice, the garbage nodes in successor and predecessor lists (that is, invalidand unused references to deleted nodes) do not seem to be a signi�cant source ofine�ciency for most applications. For example, in the case of graph reduction, wheregraphs are heavily updated, only 25-30% of nodes in successor and predecessor listsare �ltered out due to invalid stamps.Avoiding Version-Tree Lookups. We can de�ne the \leftmost" node of a version treeas the leaf that is reached by repeatedly following the �rst added version of eachnode starting at the root. Now we add an imperative cache array to the leftmostnode of the version tree. This means that the array represented by that node is, infact, duplicated. Since index access within this array is possible in constant time,algorithms that use the functional array in a single-threaded way have the samecomplexity as in the imperative case because the version tree degenerates to aleft spine path with the leaf node o�ering constant-time access during the wholealgorithm.There is a subtlety in this implementation involving having just one cache array:if a functional array is used a second time, the cache has already been consumedfor the previous computation and cannot be used again. This gives a surprisingtime behavior: the user executes a program on a functional array, and it runs quitefast. However, running the same program again results, in general, in much largerexecution times since all access now goes through the version tree. Therefore, wecreate in our implementation a new cache for each new version derived from theroot of the version tree.Support for Special Operations. The version-tree implementation described so faris surprisingly ine�cient for the operations Empty-match and &-match. Testing forthe empty graph can be easily supported by extending the graph representation toinclude the number of nodes in the graph. The operation &-match is more di�cult torealize because we must, in general, scan the whole stamp array to �nd a valid (thatis, non-deleted) node. Note that even a simple imperative array implementationrequires, in general, linear time for this operation because it scans the whole array.(This is not surprising since the question of graph updates is completely ignoredanyway in almost all descriptions of imperative graph representations.)



14 Martin ErwigTo account for &-match we keep for each graph a partition of inserted nodes(that is, nodes existent in the graph) and deleted nodes: when a node is deleted(decomposed), it is moved from the inserted-set into the deleted-set, when a nodeis inserted into the graph, it is moved the other way. The node partition is realizedby two arrays, index and elem , and an integer k giving the number of existentnodes, or, equivalently, pointing to the last existing node. The array elem stores allexistent nodes in its left part and all deleted nodes in its right part, and index givesfor each node its position in the elem array. A node v is existent if index [v ] � k ,and it is deleted if index [v ] > k . Inserting a new node v means to move it fromthe deleted-set into the inserted-set. This is done by exchanging v's position inelem with the node stored at elem[k + 1] (that is, the �rst deleted node) followedby increasing k by 1. The entries in index must be updated accordingly. To deletenode v, �rst swap v and elem[k ], and then decrease k by 1. All this is possible inconstant time.Now all the above mentioned graph operations can be implemented to work inconstant time: &-match can be realized by calling &v with elem[1], and Empty-match is true if k = 0. Moreover, some other useful graph operations are e�cientlysupported by the node partition: a list of i fresh nodes as required for the imple-mentation of newNodes is simply given by [elem[k + 1]; : : : ; elem[k + i ]], k gives thenumber of nodes in the graph, and all nodes can be reported in time O(k) whichmight be much less than the size of the array. The described implementation ofnode partitions is an extension of the sparse set technique proposed in Briggs andTorczon (1993). The drawback of this extension is that keeping the partition infor-mation requires additional space and causes some overhead. Moreover, graphs stillare not truly dynamic since arrays can neither grow nor shrink.3.3.3 Binary Search Tree RepresentationA binary search tree can also be used as a functional array implementation, andthis o�ers an immediate realization of functional graphs: a graph is represented bya pair (t;m) where t is a tree of pairs (node, (predecessors, label, successors)) andm is the largest node occurring in t. Note that m is used to support the creationof new nodes, which is possible in O(1) time.However, inserting and deleting a node context (p; v; l; s) requires considerablee�ort. For insertion we have to insert the context itself, which takes O(logn) steps,and we have to insert v as a successor (predecessor) for each node in p (s), whichrequires O(c logn) steps. Hence, insertion runs in O(c logn) time which can be aslarge as O(n logn) for dense graphs. Context deletion takes even more time sincewe have to remove v from the successor (predecessor) list for each element of p (s),which requires searching these lists for v. Altogether deletion runs in O(c2 logn)time or O(c log c logn) if predecessors/successors are stored as search trees. In densegraphs, this gives a complexity of O(n2 logn) or O(n log2 n).Although the asymptotic behavior of the search tree representation is clearlyworse (at least for single-threaded graph uses) than the array implementation, itperforms very well in practice (see Erwig (1997a)), maybe because it is much simpler



Inductive Graphs and Functional Graph Algorithms 15and does not require so much tuning. It also has the great advantage that it is a trulydynamic structure that supports unbounded growth of graphs. A further problemwith the array implementation is that it is di�cult to realize in Haskell. Eitherunsafe features have to be exploited, or operations like constant time array updateshave to be encapsulated in a monad. Since such a monad has to extend as far asaccess to the array is made, the monad would eventually show up in the algorithmsand cannot be hidden in the graph implementation. This is very bad and wouldcompletely destroy the functional avor of the algorithms using inductive graphs.The version-tree implementation is therefore contained only in the ML version ofFGL, the Haskell version currently provides only the search-tree representation.4 Functional Graph AlgorithmsWe are now ready to present a collection of graph algorithms based on the inductiveview of graphs. We describe a selection of algorithms that are often used in courseson algorithms and data structures. This should serve as evidence that it is possibleto teach graph algorithms using functional languages.We will, however, not provide all the additional explanations that are requiredfor a potential graph chapter of a textbook. Rather we shall discuss the di�erentavor of the functional algorithms compared with the imperative versions. We alsocomment on complexity, and we assume that & and &v are O(1), even though thatmay not be true for some implementations. More example programs can be foundin Erwig (1997b) where we have concentrated on the de�nition of several kinds ofgraph fold operations and on optimization rules for these and in Erwig (1997a)where we have used example programs to benchmark di�erent inductive graphimplementations. One of these examples is a completely functional graph reducerthat is also described in more detail in Erwig (1998a).4.1 Depth-First SearchDepth-�rst search is one of the most basic and most important graph algorithms.It can reveal a lot about the internal structure of a graph, and this informationcan be used to implement several other algorithms, such as topological sorting orcomputing strongly connected components.A depth-�rst walk through a graph essentially means to visit each node in thegraph once by visiting successors before siblings. The parameters of depth-�rstsearch are, of course, the graph to be searched and a list of nodes saying whichnodes might be left to visit. This list is needed for unconnected graphs where, afterhaving completely explored one component, a node of another component is neededto continue the search. The result of depth-�rst search can be, for example, the listof nodes in the order visited (this list is said to be in depth-�rst order) or a depth-�rst spanning forest, which keeps the edges that have been traversed to reach allthe nodes.We begin by giving an algorithm that yields a list of nodes in depth-�rst order:



16 Martin Erwigdfs :: [Node] ! Graph a b ! [Node]dfs [ ] g = [ ]dfs (v :vs) (c &v g) = v :dfs (suc c++vs) gdfs (v :vs) g = dfs vs gThe algorithm works as follows. If there are no nodes left to be visited (�rst case),dfs stops without returning any nodes. In contrast, if there are still nodes thatmust be visited, dfs tries to locate the context of the �rst of these nodes (v) in theargument graph. If this is possible (second equation), which is the case whenever vis contained in the argument graph, v is the next node on the resulting node list,and the search continues on the remaining graph g with the successors of v to bevisited before the remaining list of nodes vs . The fact that the successors are putin front of all other nodes causes dfs to favor searching in the depth and not in thebreadth. Finally, if v cannot be matched (last line), dfs continues the search withthe remaining list of nodes vs . Note that the last case can only occur if v is notcontained in the graph because otherwise the pattern in the second equation wouldhave matched.The reader might have noticed a source of optimization in the above de�nition: infact, we can immediately terminate dfs and return an empty node list when nodesto be visited are still left but the graph is empty. This can be achieved by eitheradding as a �rst or second equationdfs vs Empty = [ ]or changing the �rst equation to something like:dfs vs g j null vs jj isEmpty g = [ ]This does not a�ect the computed results, but might improve e�ciency, in partic-ular, in dense graphs, where all the expanded edges can cause up to 
(n2) nodesto be checked even after the graph has been already completely traversed.It is interesting to note how the single-visit constraint of depth-�rst search isrealized through active patterns: once a node v is visited, that is, once v has beensuccessfully matched in the second equation, the algorithm continues with a graphthat does not contain v anymore. So instead of remembering visited nodes, be itimperatively by node marks or functionally by threading a set structure, in ourapproach visited nodes are simply forgotten! Also consider how easy it is to realizebreadth-�rst search: simply replace suc c++vs by vs++suc c in the second equation| the new nodes (of the deeper level) are not visited until all other nodes (ofthe current level) have been visited. Of course, this treatment of lists as queuesis ine�cient | Section 4.2 discusses how to replace lists with a more e�cientimplementation of queues.As mentioned above, in its general form dfs needs as a parameter the list ofpossibly unvisited nodes. To run dfs on a graph g without mentioning a start node,it is su�cient to call dfs g (nodes g). Note, however, that this works for bfs only ifwe use a list of queues as a parameter. Otherwise, we would end up in visiting allnodes in the same order as the list provided. Therefore, bfs de�ned to work on justone queue always needs a single start node as a parameter.



Inductive Graphs and Functional Graph Algorithms 17Once again we note that the use of active patterns is just for notational conve-nience, and we could implement dfs by using the match function:dfs [ ] g 0 = [ ]dfs (v :vs) g 0 = case match v g 0 of(Just c; g) ! v :dfs (suc c++vs) g(Nothing ; g) ! dfs vs gComputing a depth-�rst spanning forest is slightly more complex because we haveto distinguish between the relationship of a node to its successors and that to itssiblings to obtain the spanning tree structure. This was not needed in dfs since allnodes were just put into one list, that is, successors as well as siblings were con-catenated. In contrast, to compute a tree structure, the spanning trees for siblingshave to be concatenated whereas otherwise a node makes up a new branch of thetree with the spanning trees of its successors as subtrees.First, we need a de�nition of multi-way trees together with a postorder traversalfunction that visits the nodes of all subtrees before the root.data Tree a = Br a [Tree a]postorder :: Tree a ! [a]postorder (Br v ts) = concatMap postorder ts++[v ]Note that concatMap is a function de�ned in the Haskell prelude:concatMap :: (a ! [b]) ! [a] ! [b]concatMap f = concat : map fOf course, the given simple implementation for postorder has quadratic runningtime, but by using an accumulating parameter or an O(1) queue data structure wecan obtain linear complexity.Now we can de�ne a function to compute spanning forests. The function is verysimilar to dfs ; it mainly di�ers in the second equation which applies when the nextnode to be visited v can be found in the graph. In that case we have to createindependently two spanning forests: one forest f for all successors of v; these treesbecome the subtrees of the newly created tree with root v, and this tree is addedto the second forest f 0 that is computed for the remaining nodes to be visited. Toensure that each node is used only once we have to remember the unused graphparts in a second result and thread this graph through successive function calls.df :: [Node] ! Graph a b ! ([Tree Node];Graph a b)df [ ] g = ([ ]; g)df (v :vs) (c &v g) = (Br v f :f 0; g2) where (f ; g1) = df (suc c) g(f 0; g2) = df vs g1df (v :vs) g = df vs gSince the graph result from df is only used internally, we de�ne an additionalfunction d� that returns just the computed forest.d� :: [Node] ! Graph a b ! [Tree Node]d� vs g = fst (df vs g)



18 Martin ErwigBeing able to compute depth-�rst spanning forests we can now implement quiteeasily functions for topologically sorting a graph and computing strongly connectedcomponents (Erwig, 1992; King & Launchbury, 1995; King, 1996): a topologicalsorted list of nodes can be obtained by a reversed postorder list of nodes of thedepth-�rst spanning tree, and Sharir's algorithm for computing strongly connectedcomponents works by computing a depth-�rst spanning forest on the reversed graphstarting with a topologically sorted list of nodes.topsort :: Graph a b ! [Node]topsort = reverse : concatMap postorder : d�scc :: Graph a b ! [Tree Node]scc g = d� (topsort g) (grev g)These two examples demonstrate nicely how the compositional style of functionallanguages can be used to give succinct descriptions of graph algorithms. In Launch-bury (1995) and Erwig (1997b) it is shown how these de�nitions can be optimizedfurther. 4.2 Breadth-First SearchBreadth-�rst search essentially means visiting siblings before successors. This hasthe e�ect of �rst visiting all nodes of a certain distance (measured in number ofedges) from the start node before visiting nodes that are further away. This propertyis exploited by the shortest-path algorithm esp given below that is based on breadth-�rst search.bfs :: [Node] ! Graph a b ! [Node]bfs [ ] g = [ ]bfs (v :vs) (c &v g) = v :bfs (vs++suc c) gbfs (v :vs) g = bfs vs gThe algorithm works very much like depth-�rst search, except for the treatmentof newly found successors, and this reects exactly the way in which the nodes tobe visited are implicitly ordered: for dfs these are kept in a stack, that is, newlydiscovered nodes are put in front of previously discovered (but not yet visited) ones,for bfs the nodes are kept in a queue, that is, new nodes are appended to old ones.Using lists to realize a queue is not very e�cient due to the append operationtaking linear time in the size of its �rst argument. However, there are several queueimplementations available that guarantee constant time operations either amortizedover all operations (Gries, 1981; Burton, 1982) or even for a single operation (Hood& Melville, 1981; Chuang & Goldberg, 1993; Okasaki, 1995). For our purpose, anamortized constant-time queue implementation is su�cient; this keeps bfs a linearalgorithm. Moreover, we can enhance the above de�nition in the same way as dfsor df by aborting the search on encountering the empty graph.To build a breadth-�rst spanning tree we again have to keep more informationthan just the order of nodes. Before we present the algorithm we make two obser-vations. First, it is quite di�cult to e�ciently build a breadth-�rst spanning tree



Inductive Graphs and Functional Graph Algorithms 19represented, for example, as a Tree Node value as was done by df (see also (Okasaki,2000)). The problem is that the expressions denoting such trees have to be builtbottom-up whereas the recursion in bfs delivers nodes in a way that is per se suitedfor top-down construction. Second, such a representation is not so important any-how because one of the most important uses of a breadth-�rst spanning tree is to�nd shortest paths3 (from the root to any other node), and this is supported byinward directed trees, that is, trees whose edges point from the successors towardpredecessors: �nding a shortest path from node s to node t can be achieved by (i)computing the breadth-�rst spanning tree rooted at s, (ii) locating node t in it,and (iii) following the edges from t to the root. Then the reverse list of traversednodes/edges gives the shortest path.Now an inward directed tree can be represented simply as a mapping with domainand range of type Node mapping nodes to their predecessors. Since such a mappingis built incrementally either during breadth-�rst search or after it using a list oftraversed edges, we cannot use a monolithic array for implementing it. In fact, thearray construct proposed in Johnsson (1998) could be used to build up such a tree,but this requires the reformulation of the whole algorithm so that it follows the arrayconstruction, and this destroys the simplicity and elegance of the functional bfsalgorithm. Instead we can use a binary search tree, but this adds a logarithmic factoron each operation for (i) building up the spanning tree and (ii) for reconstructingthe shortest path after that.The latter problem can be addressed by not just mapping nodes to their pre-decessor, but to the whole path to the root, which we call the root path or r-pathfor short. This does not really make the implementation more complex: to insert uas a predecessor of v instead of just inserting u with key v into the tree, we �rstlocate the root path already stored at u, say p, and then insert u:p with key v intothe tree. In this way we only need to locate t in the inward directed tree, and wecan just reverse the list of stored nodes to obtain the shortest path from s to t.Note that this representation causes only minimal space overhead: since commonpre�xes of paths (that is, common su�xes of r-paths) are shared, this representa-tion is linear in the number of stored nodes. However, the complexity of computingthe breadth-�rst spanning tree and thus also for computing shortest paths is stillO(n logn+m).Now a further improvement is to represent a breadth-�rst spanning tree by alist (instead of a tree) of r-paths from each node to the root. We call this kind oftree a root-path tree. Again, to have a linear space requirement the r-paths shouldshare common su�xes. This can be achieved quite easily by keeping the r-pathsin the queue of bfs . Below we de�ne the function bft that takes a single node vand computes the breadth-�rst spanning tree rooted at v as a list of r-paths bycalling the function bf which works much like bfs but uses a queue of r-paths asits �rst argument. The expression map (:p) (suc c) extends the root path p by v's3 Here the distance is measured in number of edges. A shortest-path algorithm that uses edgeweights is presented in Section 4.3.



20 Martin Erwigsuccessors and thus yields a new root path for each of v's successors. These newroot paths are appended to the rest of the queue ps .type Path = [Node]type RTree = [Path]bft :: Node ! Graph a b ! RTreebft v = bf [[v ]]bf :: [Path] ! Graph a b ! RTreebf [ ] g = [ ]bf (p@(v : ):ps) (c &v g) = p:bf (ps++map (:p) (suc c)) gbf (p:ps) g = bf ps gAgain the optimizations for termination on empty graphs and for using a moree�cient queue implementation apply.Now the algorithm for �nding the shortest path between two nodes s and t�rst computes the breadth-�rst spanning tree rooted at s. This spanning tree isrepresented as a list of root paths, and from these the �rst one that has t as a �rstelement is extracted. This root path has then only to be reversed to obtain theshortest path.�rst :: (a ! Bool) ! [a] ! a�rst p = head : �lter pesp :: Node ! Node ! Graph a b ! Pathesp s t = reverse : �rst (n(v : )! v t) : bft sThis breadth-�rst search algorithm is much simpler than the one given by King(King, 1996), which uses two rather subtle functional programming tricks. More-over, the computation of shortest paths is e�cient, and esp has linear running time(assuming the usual optimization and O(1) graph operations). This is not the casefor King's algorithm that has to perform an uninformed search for the target nodet. The reason is that King has chosen the same kind of \top-down" tree as fordepth-�rst search. 4.3 Shortest PathsVery closely related to the shortest-path algorithm of the preceding section isDijkstra's algorithm for computing shortest paths in graphs with positive edgelabels. The main di�erence is that the length of a path is now de�ned to be thesum of its edge labels and that a shortest path between two nodes is accordinglyone that has a minimum path length. Dijkstra's algorithm can be described similarto bfs . The only di�erence is that root paths are not kept in a queue but in a heapthat is ordered with regard to the lengths of the paths.We �rst de�ne a type for labeled nodes and labeled paths. A labeled root path isa list of labeled nodes representing a path from a node to the root, and each nodev is paired with the length of the path to the root. Thus, the label of the �rst node



Inductive Graphs and Functional Graph Algorithms 21of the r-path gives the length of the complete path (and the length of an r-path'slast node, which is always the root, is always 0). As we have represented breadth-�rst spanning trees with lists of plain r-paths, we now represent shortest-path treeswith lists of labeled r-paths. We de�ne labeled paths as instances of the Ord andEq classes so that we can store them in heaps. The function getPath extracts apath to a speci�c node from a labeled root tree and drops all labels.type LNode a = (Node; a)type LPath a = [LNode a]type LRTree a = [LPath a]instance Eq a ) Eq (LPath a) where(( ; x ): ) (( ; y): ) = x yinstance Ord a ) Ord (LPath a) where(( ; x ): ) < (( ; y): ) = x < ygetPath :: Node ! LRTree a ! PathgetPath v = reverse : map fst : �rst (n((w ; ): )!w v)The labeled root paths stored in a heap represent the currently expanded shortest-path tree. In particular, all their �rst nodes represent the fringe of the search, andthe labels give the tentative costs for these nodes. All other nodes of the r-paths arenodes already known to belong to the shortest path tree. Now Dijkstra's algorithmworks by repeatedly selecting the r-path p with the least labeled �rst node, sayv. (This corresponds to making v permanent.) Then new r-paths are created byputting v's successors in front of p using as labels the label of v plus the costassociated with the edge leading to the successor. This is done by the functionexpand . Storing di�erent root paths for one node in the heap presents no problem(with regard to correctness) since only the one with the least cost is selected. Shoulda node be selected a second time, it will simply be ignored because matching in thegraph will fail. However, since the heap now contains up to O(m) entries, deletinga minimum from the heap will be performed up to O(m) times causing a runningtime of O(m logm) (= O(m logn)). Altogether, this version of Dijkstra's algorithmruns in a worst case time of O(m +m logn) which asymptotically worse, at leastfor non-sparse graphs, than the imperative algorithm that runs in O(m+ n logn).We use a pairing heap implementation as described in Okasaki (1998). The opera-tion unitHeap wraps a single value into a heap, and the operationmergeAll combinesa list of heaps into a single heap. The operation splitMin applied to a non-emptyheap returns a pair containing its minimum and the remaining heap without theminimum. (Even though, strictly speaking, we do not need a mergeable heap, wehave chosen pairing heaps because they are reported to be very e�cient in practiceand the mergeAll operation is very convenient in describing the node expansion.)Again to have a concise notation, we use an active pattern x�h that is based onsplitMin and matches any non-empty heap h0; it binds the minimum of h0 to x andthe heap without x to h.



22 Martin Erwigexpand :: Real b ) b ! LPath b ! Context a b ! [Heap (LPath b)]expand d p ( ; ; ; s) = map (n(l ; v)!unitHeap ((v ; l + d):p)) sdijkstra :: Real b ) Heap (LPath b) ! Graph a b ! LRTree bdijkstra h g j isEmptyHeap h jj isEmpty g = [ ]dijkstra (p@((v ; d): )�h) (c &v g) = p:dijkstra (mergeAll (h:expand d p c)) gdijkstra ( �h) g = dijkstra h gNote that Real is a subclass of Num containing all standard numeric types that arealso a subclass of Ord ; Real contains all standard numeric types except Complex .Next we de�ne an additional function spt , which encapsulates the constructionof the initial heap, and a function sp for computing shortest paths.spt :: Real b ) Node ! Graph a b ! LRTree bspt v = spt (unitHeap [(v ; 0)])sp :: Real b ) Node ! Node ! Graph a b ! Pathsp s t = getPath t : spt s4.4 Minimum Spanning TreeA minimum spanning tree of a labeled undirected graph is a spanning tree ofminimal total edge length. Hence, in our context of directed graphs the algorithmsdescribed below work, in general, only for directed graphs that properly representundirected graphs. We can easily convert any directed graph into one representingan undirected one with the function undir described in Section 3.2.The two most popular minimum spanning tree algorithms are those of Kruskaland Prim. Kruskal's algorithm works by repeatedly taking edges in order of increas-ing edge length as long as they do not form a cycle. The graph is used only to getthe list of edges, and the crucial part of the algorithm is an e�cient implementationof a union/�nd data structure to enable fast cycle detection.In contrast, Prim's algorithm performs a usual walk through the graph. It is agreedy algorithm, like Dijkstra's algorithm, which means that in each step one newpart of the result is computed. Prim's algorithm keeps a heap of edges that startfrom the currently computed part of the minimum spanning tree, and selects ineach step the smallest of these edges and extends the fringe around the tree bythose edges that start from the selected edge's target node.Before we can de�ne Prim's algorithm we have to decide about the representationof the spanning tree, and this decision depends on the context in which the spanningtree is used. One application can be found in telecommunication: some telephonecompanies calculate the costs of phone calls by the length of a path between twonodes in a precomputed minimum spanning tree. This is supported again by labeledroot path trees.We �rst need a function for creating new root paths for the successors of thenode expanded last. This function is quite similar to expand , but it has to consideronly the edge costs instead of the costs of the complete root paths.



Inductive Graphs and Functional Graph Algorithms 23addEdges :: Real b ) LPath b ! Context a b ! [Heap (LPath b)]addEdges p ( ; ; ; s) = map (n(l ; v)!unitHeap ((v ; l):p)) sNow we can de�ne Prim's minimum spanning tree algorithm. We parameterize thefunction mst also by a Node-value to provide some exibility for specifying the rootof the spanning tree. One can easily de�ne a function that does not need a root byusing the operation matchAny .mst :: Real b ) Node ! Graph a b ! LRTree bmst v g = prim (unitHeap [(v ; 0)]) gprim :: Real b ) Heap (LPath b) ! Graph a b ! LRTree bprim h g j isEmptyHeap h jj isEmpty g = [ ]prim (p@((v ; ): )�h) (c &v g) = p:prim (mergeAll (h:addEdges p c)) gprim ( �h) g = prim h gThe striking similarity to Dijkstra's algorithm has been known for a long time andbecomes very clear in the presented programming approach. In fact, all algorithmsconsidered so far follow the same basic traversal scheme and di�er essentially inthe data structure that is used to control the traversal. This fact can be exploitedin teaching graph algorithms by presenting the di�erent algorithms as instancesof this scheme, which has already been emphasized in Erwig (1992) and in Erwig(2000).Going back to Prim's algorithm, it remains to be shown how paths can be found ina minimum spanning tree represented by a root path tree. The idea is quite simple:�rst, select the root paths for the two nodes, and then join their non-common partsat their least common ancestor. This path reconstruction is realized by the functionsjoinPaths and joinAt .mstp :: Real b ) LRTree b ! Node ! Node ! Pathmstp t a b = joinPaths (getPath a t) (getPath b t)joinPaths :: Path ! Path ! PathjoinPaths p q = joinAt (head p) (tail p) (tail q)joinAt :: Node ! Path ! Path ! PathjoinAt x (v :vs) (w :ws) j v w = joinAt v vs wsjoinAt x p q = reverse p++(x :q)All the algorithms described so far use the graph in a single-threaded way. Sinceour data type of graphs is persistent, we shall consider at least one application thatuses graphs persistently, that is, di�erent versions of a graph are employed at thesame time. This is described next.4.5 Maximum Independent Node SetsAn independent node set is a subset of the nodes of a graph such that no twonodes of this set are connected by an edge. A maximum independent node set is an



24 Martin Erwigindependent node set of maximum cardinality. The problem of �nding a maximumindependent node set is in a sense the dual of the maximum clique problem whichasks for a maximal set of nodes such that each pair of nodes is connected by anedge. Both problems are NP-hard. Hence there is little chance that there existe�cient algorithms for solving them. Nevertheless, there are algorithms that aremuch better than blindly trying all possible node subsets.The algorithm de�ned below works by recursively comparing two alternatives:1. the maximum independent node set of a graph g from which the node v withmaximum degree is removed, and2. the maximum independent node set of g from which the neighbors of v havebeen removed, extended by the node v itself.Then the larger of the two sets is the maximum independent node set of g.indep :: Graph a b ! [Node]indep Empty = [ ]indep g = if length i1 > length i2 then i1 else i2where vs = nodes gm = maximum (map (ip deg g) vs)v = �rst (nv! deg v g m) vsc &v g 0 = gi1 = indep g 0i2 = v :indep (foldr del g 0 (pre c++suc c))Note that pre is de�ned analogously to suc.5 ConclusionsWe have proposed an inductive de�nition of graphs that encourages the de�nition ofgraph algorithm as recursive functions. We hope that this functional style of writinggraph algorithms eventually �nds its way into teaching graph algorithms. Activepatterns make the function de�nitions more succinct, but all functions can be easilyrewritten without using them. We have also described an e�cient implementationof inductive graphs, which shows that the alternative algorithmic style gives bothe�ciency and clarity. AcknowledgmentsThe author thanks Chris Okasaki and the anonymous reviewers for their helpfulcomments. ReferencesAasa, A., Holstr�om, S. and Nilsson, C. (1988) An E�ciency Comparison of Some Repre-sentations of Purely Functional Arrays. BIT 28(3):490{503.Barendsen, E. and Smetsers, S. (1996) Uniqueness Typing for Functional Languages withGraph Rewriting Semantics. Mathematical Structures in Computer Science 6:579{612.
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